Contamination Control Best Practices

In order to satisfy customer demands, O.E.M's are forced to design more sophisticated systems with higher pressures and tighter clearances. Machine systems are a lot more sensitive to contaminants today than they were a number of years ago. As a result, fluid contamination threatens reliability throughout the life cycle of today's machines and engines, making contamination control essential to extracting the full value built into products.

The purpose of this document is to illustrate various best practices for the implementation of a successful contamination control program relating to earthmoving equipment. A proper contamination control program provides a significant opportunity for cost saving, and insures that companies are on par with world-class best practices.

By

Robert Garvie

(Using best practices as introduced by Caterpillar)

Barloworld Equipment
Electron Avenue Extension
Isando
Benefits of Contamination Control (CC)

The benefits of CC include:
- Longer component life
- Reduced re-work
- Extended oil drain intervals
- Increased productivity
- Professional image
- Lower operating costs
- Reduced hazardous waste generation
- A positive culture change

Implementation of Contamination Control (CC)

CC Champion

The best approach to implementing CC is to introduce a documented, comprehensive program of best practices, procedures and standards. This program should be continually evaluated and managed. Ideally, this function should be assigned to a single person, a “CC champion”.

Ideal characteristics of a CC champion:
- Has a basic knowledge of the complete operation and processes
- Good communication skills
- A positive attitude toward CC and an understanding of the necessity thereof
- Computer literate
- A good motivator

The accountability of individual areas and tasks should not all be delegated to the CC champion, but should be delegated to suitable operations personnel.

Cleanliness Levels

Since the main objective of CC in our context is clean fluids, cleanliness requirements (using ISO codes) should be established for each type of fluid used. The monitoring and maintaining of these cleanliness levels are the most critical aspect of CC. Cleanliness requirements should be obtainable from the equipment manufacturer. Even though these requirements provide the cleanliness targets, it must be remembered that “cleaner is better”.

Fluid cleanliness is monitored through particle counting. Various particle counters are available on the market. Kidney looping can be used for cleaning a fluid which is out of spec. Kidney looping is simply passing the fluid through filters, which are external to the normal system. Various types of filter carts are available for this.

Contamination Control (CC) Best Practices

Wash Facility

All machines must be washed before entering the shop
The reason is obvious: to keep the shop clean, don’t allow dirty machines to enter.

The wash bay should be equipped with high volume wash equipment
Ideally, mounted water cannons should be used. These are typically in the range of 414 kPa to 552 kPa with a flow rate of 303 l/m to 378 l/m per cannon. For larger machines the cannons should be mounted higher for a better angle. These cannons should be supplemented by a hand
held fire hose for cleaning the out-of-reach areas. Having this type of equipment minimizes washing time and promotes an effective wash.

The path from the wash bay to the workshop should be kept clean
The path should be constructed of concrete, crushed stone, dust-a-side, or similar material. Periodically cleaning this path clean will minimize dirt being tracked into the shop.

Use hot water and soap in the wash bay
Cleaning is more effective when hot water and soap are used for greasy areas. A separate soap sprayer can be used.

Shop Attributes

Ensure that workshops have doors and that they’re used during dusty/rainy conditions

Seal workshop floors
Sealed floors are easier to clean and oil doesn’t penetrate into the concrete easily.

Mark walkways and safety/storage areas
Good organization and housekeeping promote cleanliness.

Use component stands for frequently-worked-on components
Using the proper stand enhances both the safety of the job and the cleaning under the component.

Use wooden blocks for other components
It’s impractical to have a stand for each type of component. For not-so-regular components use wooden blocks, instead of placing the component on the floor, or instead of using pallets.

Cover assembly benches with plastic or rubber matting to protect parts

Use filters and water separators on air lines
Air blown on parts should be clean and dry.

Install filters on solvent stands
The solvent used for cleaning parts should also be clean! For best results install: a 4 micron final filter, a 15 or 25 micron bag filter on the drain and a diatomaceous earth media filter in the reservoir. All three filters assist in cleaning the fluid. Also, the bag filter makes the final (more expensive) filter last longer, and the earth media filter makes the solvent last longer, by removing the oil from the solvent. Solvent cleanliness should also be monitored through particle counting.
Use final filters on oil supply lines
Ensure that filters are installed on shop supply lines. The correct filtration design should be used to ensure that the oil meets the determined cleanliness level.

Remove grinding and cutting operations from assembly areas
These operations should be done in ‘dirtier’ environments, such as the welding shop.

Shop Practices

Use caps, plugs and plastic wrap for protecting components
Caps and plugs provide better, more visually attractive protection for openings than do masking tape and plastic. For irregular size openings use aluminium tape. Plastic wrap should be available for protecting components/parts.

Use rust proofing on critical components and wrap them individually
Rust is often overlooked as a contaminant. “Critical components” refers to items such as gears, camshafts, bearings, etc.

Cover all components waiting for assembly and use rust proofing as necessary
This refers to not-so-critical items such as housings, hardware, covers, etc. Protection is easily achieved by putting items in wire baskets and wrapping/coversing the entire basket with plastic.

Keep new parts and components in their original packaging until they’re ready for assembly

Use a fluid recovery cart for reusing oil
A lot of money can be saved by reusing oil, which has not reached the end of its life yet. A recovery cart can be used to filter the oil back to the determined cleanliness spec, while a repair is being done.

Implement a procedure for cleanly refilling lubricant containers
Using a proper procedure for cleaning and refilling oil cans, grease guns, etc. with clean lubricants reduces the chance of contaminants being introduced through these.

Shop Housekeeping

Use a vacuum and absorbent pads for cleaning up oil spills
Don't use sawdust (or similar material), since this also introduces contaminants to the workshop. The best method for cleaning oil spills is to use a vacuum and/or absorbent pads, followed by a hot water mop. Oil spills should be cleaned up immediately.

Label and paint waste containers
Hydraulic Hose Rebuilding

Install an extraction fan and dust collector on the hose saw
This reduces the debris in the hose assembly area.

Store hoses with ends capped

Protect couplings
Couplings can be kept clean by putting them in plastic bags, sealed containers or by dosing both ends with plastic plugs.

Clean hoses properly before and after assembly
Use a hose gun for proper cleaning. Before assembly, shoot two clean projectiles through the cut-off hose (one in each direction). After the hose is assembled, shoot another two projectiles through the hose assembly (one in each direction). If the last projectile is still dirty, continue the process until the projectiles appear clean.

Parts Storage

Keep filter boxes closed

Store o-rings in plastic bags in enclosed drawers

Implement a program for periodic cleaning of shelves, etc.

Dispatch parts in plastic bags

Reman Parts Returns

Plug all openings and use rust proofing where applicable

Use shipping stands for large components and shrink wrap these components
Oil Storage and Handling

Filter fluids entering and exiting storage tanks
Filtering fluids before they enter the tanks ensures that the tanks remain clean and don't become a source of contamination.

Use 2 or 4 micron silica gel breathers

Do particle counting periodically and keep PM records
If fluid cleanliness is measured, then it can be managed. Whenever the cleanliness level drops out of spec, corrective action should be taken.

Protect lube truck hoses and nozzles
The hoses and nozzles should be in closed, regularly-cleaned compartments. Nozzles should be wiped with a lint-free rag before use.

Use covers on oil drums
Using covers not only prevents water and dirt from settling on the drums, but also allows drums to be cleanly stored in the upright position.

Fueling

With the tight clearances in modern fuel systems, these systems are perhaps the most sensitive to contaminants.

Use fast fuelling equipment
Use final filters on fuel lines
This refers to the fuel island as well as the fuel truck. Ensure that the filters are capable of filtering the fuel to the determined cleanliness level.

Protect fuel filler nozzles
Fit covers on nozzles. Hoses and nozzles on fuel trucks should be in closed, regularly-cleaned compartments. Nozzles should also be cleaned with a lint-free rag before use.

Protect machine fueling ports
Nozzles on earthmoving machines should be protected with covers and also be cleaned with a lint-free rag before refueling.

Do particle counting periodically and keep PM records
The cleanliness level of fuel at the fuel island and in the fuel truck should be monitored for management thereof.

Field Service
Implement the same processes and procedures for the field service artisans as in the workshop.

Supply field service vehicles with caps, plugs and plastic wrap

Supply field artisans with oil sampling equipment

Use filtered portable solvent washers
Use filters and water separators on service truck compressors

Supply filter carts for kidney looping in the field

Fluid Cleanliness

Monitor all machines regularly through particle counting and use trending
If machine cleanliness levels are trended, kidney looping should be done, whenever a fluid drops two or more ISO codes out of spec. Problems can also often be detected through this method, preventing catastrophic failures!

Test opened system cleanliness
If an oil-containing system has been opened during a repair (field and workshop), ensure that a particle count is done on the oil. Results should be available within 24 hours and kidney looping should be done, if necessary.